首页> 外文OA文献 >A subquadratic-scaling subspace projection method for large-scale Kohn-Sham density functional theory calculations using spectral finite-element discretization
【2h】

A subquadratic-scaling subspace projection method for large-scale Kohn-Sham density functional theory calculations using spectral finite-element discretization

机译:一种用于大规模的子二次尺度子空间投影方法   Kohn-sham密度泛函理论计算使用光谱   有限元离散化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a subspace projection technique to conduct large-scale Kohn-Shamdensity functional theory calculations using spectral finite-elementdiscretization. The proposed method treats both metallic and insulatingmaterials in a single framework, and is applicable to both pseudopotential aswell as all-electron calculations. The key ideas involved in the methodinclude: (i) employing a higher-order spectral finite-element basis that isamenable to mesh adaption; (ii) using a Chebyshev filter to construct asubspace which is an approximation to the occupied eigenspace in a givenself-consistent field iteration; (iii) using a localization procedure toconstruct a non-orthogonal localized basis spanning the Chebyshev filteredsubspace; (iv) using a Fermi-operator expansion in terms of thesubspace-projected Hamiltonian represented in the non-orthogonal localizedbasis to compute relevant quantities like the density matrix, electron densityand band energy. We demonstrate the accuracy and efficiency of the approach onbenchmark systems involving pseudopotential calculations on metallic aluminumnano-clusters up to 3430 atoms and on insulating alkane chains up to 7052atoms, as well as all-electron calculations on silicon nano-clusters up to 3920electrons. The benchmark studies revealed that accuracies commensurate withchemical accuracy can be obtained, and a subquadratic-scaling with system sizewas observed for the range of materials systems studied. In particular, for thealkane chains---close to linear-scaling is observed, whereas, for aluminumnano-clusters---the scaling is observed to be $\mathcal{O} (N^{1.46})$. Forall-electron calculations on silicon nano-clusters, the scaling with the numberof electrons is computed to be $\mathcal{O} (N^{1.75})$. Furthermore,significant computational savings have been realized with the proposed approachwith respect to reference calculations.
机译:我们提出了一种子空间投影技术,以使用频谱有限元离散化进行大规模的Kohn-Shamdensity功能理论计算。所提出的方法在单个框架中同时处理金属材料和绝缘材料,并且适用于伪电位以及全电子计算。该方法涉及的关键思想包括:(i)采用适合于网格自适应的高阶谱有限元基础; (ii)在给定的自洽场迭代中,使用Chebyshev滤波器构造一个子空间,该子空间近似于所占据的本征空间; (iii)使用定位程序来构造跨Chebyshev滤波子空间的非正交定位基础; (iv)使用费米算子展开式来表示以非正交局部基表示的子空间投影哈密顿量,以计算相关量,例如密度矩阵,电子密度和能带。我们展示了基准系统方法的准确性和效率,该基准系统涉及最多3430个原子的金属铝纳米簇和最多7052个原子的绝缘烷烃链的伪电势计算,以及最多3920个电子的硅纳米簇的全电子计算。基准研究表明,可以获得与化学精度相称的精度,并且在所研究的材料系统范围内,观察到了系统尺寸的二次方缩放。特别地,对于烷烃链---观察到接近线性结垢,而对于铝纳米簇-观察到结垢为$ \ th {O}(N ^ {1.46})$。对于硅纳米团簇的全电子计算,随着电子数量的缩放比例被计算为$ \ mathcal {O}(N ^ {1.75})$。此外,相对于参考计算,所提出的方法已经实现了可观的计算节省。

著录项

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号